AVL树 4个月前

编程语言
928
AVL树

一、模拟实现AVL树

AVL树就是高度平衡二叉搜索树 所有树的左右子树高度差不超过1 平衡因子 = 右子树高度 - 左子树高度

#pragma once
#include<iostream>
#include<assert.h>
using namespace std;

template<class K,class V>
struct AVLTreeNode
{
    AVLTreeNode<K, V>* _left;
    AVLTreeNode<K, V>* _right;
    AVLTreeNode<K, V>* _parent; //三叉链

    int _bf; //平衡因子  balance factor
    pair<K, V> _kv;
    
    AVLTreeNode(const pair<K, V>& kv)
        :_left(nullptr)
        ,_right(nullptr)
        ,_parent(nullptr)
        ,_bf(0)
        ,_kv(kv)
    {}
};

template<class K,class V>
class AVLTree
{
    typedef AVLTreeNode<K, V> Node;
public:
    bool Insert(const pair<K,V>& kv)
    {
        if (_root == nullptr)
        {
            _root = new Node(kv);
            return true;
        }
        
        Node* parent = nullptr;
        Node* cur = _root;
        while (cur!=nullptr)
        {
            if (cur->_kv.first > kv.first)
            {
                parent = cur;
                cur = cur->_left;
            }
            else if (cur->_kv.first < kv.first)
            {
                parent = cur;
                cur = cur->_right;
            }
            else
            {
                return false;
            }
        }

        cur = new Node(kv);
        //开始连接
        if (cur->_kv.first > parent->_kv.first)
        {
            parent->_right = cur;
            cur->_parent = parent;
        }
        else
        {
            parent->_left = cur;
            cur->_parent = parent;
        }

        //1.cur是parent的左,parent->_bf--,是右则++;
        //2.更新后的_bf如果是0,说明parent高度没有发生变化 : 更新前_bf为 -1/1 ,变为0说明把矮的那边填上
        //3.更新后的_bf为-1/1,说明parent变高了,继续向上更新
        //4.更新后的_bf为-2/2,说明parent的子树出现了不平衡,需要进行旋转处理

        //开始更新平衡因子
        while (parent)
        {
            if (cur == parent->_right)
                parent->_bf++;
            else
                parent->_bf--;

            if (parent->_bf == 0)
                break;        //parent所在的子树高度没有变化,更新结束
                
            else if (parent->_bf == 1 || parent->_bf == -1)
            {
                //parent所在的子树变高了,需要继续向上进行更新
                cur = parent;
                parent = parent->_parent;
            }
            else if (parent->_bf == 2 || parent->_bf == -2)
            {
                //parent所在的子树出现了不平衡,需要旋转更新

                //右重,向左压,左单旋
                if (parent->_bf == 2 && cur->_bf == 1)
                    RotateL(parent);
                    
                //左重,向右压,右单旋
                else if (parent->_bf == -2 && cur->_bf == -1)
                    RotateR(parent);
                    
                //头右重,左重,右左双旋
                else if (parent->_bf == 2 && cur->_bf == -1)
                    RotateRL(parent);
                    
                //头左重,右重,左右双旋
                else if (parent->_bf == -2 && cur->_bf == 1)
                    RotateLR(parent);
                else
                    assert(false);
                break;
            }
            else
                assert(false);
        }
    }

    void RotateL(Node*& parent) //左旋,\ 右重
    {
        Node* subR = parent->_right;
        Node* subRL = subR->_left;
        Node* ppNode = parent->_parent;

        subR->_left = parent;
        parent->_right = subRL;
        parent->_parent = subR;
        if (subRL != nullptr) //当其为空时不用赋值,且赋值时会访问错误 : nullptr->_parent
        {
            subRL->_parent = parent;
        }
        
        if (ppNode == nullptr) //parent就是根
        {
            _root = subR;
            subR->_parent = nullptr;
        }
        else //parent是子树
        {
            if (ppNode->_left == parent)
                ppNode->_left = subR;
            else
                ppNode->_right = subR;

            subR->_parent = ppNode;
        }

        parent->_bf = 0;
        subR->_bf = 0;
    }


    void RotateR(Node*& parent) //右旋,/ 左重 
    {
        Node* subL = parent->_left;
        Node* subLR = subL->_right;
        Node* ppNode = parent->_parent;

        if (ppNode == nullptr)
        {
            _root = subL;
            subL->_parent = nullptr;
        }
        else
        {
            if (ppNode->_left == parent)
                ppNode->_left = subL;
            else
                ppNode->_right = subL;

            subL->_parent = ppNode;
        }

        if (subLR != nullptr)
        {
            subLR->_parent = parent;
        }
        parent->_left = subLR;
        parent->_parent = subL;
        subL->_right = parent;
        
        parent->_bf = 0;
        subL->_bf = 0;
    }


    void RotateRL(Node*& parent) //先右单旋再左单旋 \ 
                                 //                 /\;
    {
        Node* subR = parent->_right;
        Node* subRL = subR->_left;

        int tmp_bf = 0;
        if (subRL->_left == nullptr && subRL->_right == nullptr) //subRL无子树时,其他树也无子树,相当于只有三棵树
        {
            tmp_bf = 0;
        }
        else
        {
            tmp_bf = subRL->_bf; //通过判断tmp_bf大小来对旋转后的各树_bf进行不一样的赋值方式 
        }

        RotateR(subR);   //注意传入的参数
        RotateL(parent);

        if (tmp_bf == 0)
        {
            parent->_bf = 0;
            subR->_bf = 0;
        }
        else if(tmp_bf == 1)
        {
            parent->_bf = -1;
            subR->_bf = 0;
        }
        else if (tmp_bf == -1)
        {
            parent->_bf = 0;
            subR->_bf = 1;
        }
        subRL->_bf = 0;
    }


    void RotateLR(Node*& parent)//先左单旋再右单旋 / 
                                 //              /\;
    {
        Node* subL = parent->_left;
        Node* subLR = subL->_right;

        int tmp_bf = 0;
        if (subLR->_left == nullptr && subLR->_right == nullptr)
            tmp_bf = 0;
        else
            tmp_bf = subLR->_bf;

        RotateL(subL);
        RotateR(parent);

        if (tmp_bf == 0)
        {
            subL->_bf = 0;
            parent->_bf = 0;
        }
        else if (tmp_bf == 1)
        {
            subL->_bf = -1;
            parent->_bf = 0;
        }
        else if(tmp_bf == -1)
        {
            subL->_bf = 0;
            parent->_bf = 1;
        }
        subLR->_bf = 0;
    }


    void Print()
    {
        _Print(_root);
    }
    void _Print(Node*& cur)
    {
        if (cur == nullptr)
            return;

        _Print(cur->_left);
        cout << cur->_kv.first << ":" << cur->_kv.second << endl;
        _Print(cur->_right);
    }


    int Height(Node* root)
    {
        if (root == nullptr)
            return 0;
        int left = 1 + Height(root->_left);
        int right = 1 + Height(root->_right);

        return left > right ? left : right;
    }

    bool Check()
    {
        return _Check(_root);
    }

    bool _Check(Node* root)
    {
        if (root == nullptr)
            return true;

        int leftHeight = Height(root->_left);
        int rightHeight = Height(root->_right);
        int dif = rightHeight - leftHeight;

        if (dif != root->_bf)
        {
            cout << "No" << endl;
            return false;
        }
        if (abs(dif) > 1)
        {
            cout << "Not" << endl;
            return false;
        }

        return _Check(root->_left) && _Check(root->_right);
    }
private:
    Node* _root = nullptr;
};

二、旋转原理图

1.右单旋原理图

image

2.左单旋原理图

image

3.右左双旋

image

4.左右双旋

image

image
EchoEcho官方
无论前方如何,请不要后悔与我相遇。
1377
发布数
439
关注者
2223691
累计阅读

热门教程文档

Gin
17小节
HTML
32小节
Vue
25小节
PHP
52小节
Kotlin
68小节